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Analysis of a Radial Crack in Cross-Ply Laminates 
Under Uniaxial Tension 

Seong-Kyun Cheong* and Oh-Nam Kwon** 
"Received December 21, 1996) 

The problem of a radial crack in cross-ply laminates under uniaxial tension is investigated in 

this paper. The normalized stress intensity factors are obtained by the modified mapping 

-collocat ion method which is based on analytic complex function theory of complex variables. 

The present results for an isotropic infinite plate show good agreement with existing solutions. 

In the range of small crack length, the stress intensity factor for a radial crack in cross-ply 

laminates under uniaxial tension becomes larger as the percentage of 0 ~ plies increases. However 

in the range of large crack length, it is insensitive to the percentage of 0 ~ plies. 

Key W o r d s :  Modified Mapping-Col locat ion  Method, Cross-Ply Laminates, Radial  Crack, 

Stress Intensity Factor, Analytic Complex Function 

I. Introduct ion  

Cracks can be found around areas of stress 

concentrations under cyclic loads. Holes are good 

examples for stress concentrations in structures. 

Therefore, the problem of a radial crack needs to 

be studied. 
Many papers (Bowie, 1956; Hsu, 1975; Shiva- 

kumar and Forman, 1980; Newman Jr., 1971; 

Tweed and Rooke, 1973; Tweed and Rooke, 

1976), which investigated the stress intensity 

factors for cracks around areas of stress concen- 

trations in isotropic plates, were published. The 

stress intensity factors were obtained by various 

techniques in these papers. 

However, only a few papers (Waddoups,  Eisen- 

mann, and Kaminski, 1971; Wang and Yau, 

1980) deal with anisotropic materials can be 

found due to the complexity of material 

anisotropy and geometry. Waddoups et al. ( 1971) 

applied Bowie's solution for an isotropic infinite 
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plate to the analysis of the finite-dimensional 

anisotropic composite. Wang and Yau(1980) 

used the path- indep endent J- integral  for an 

arbitrary path to solve the problem. 

Recently, authors(Cheong and Hong, 1988; 

Cheong and Hong, 1989; Cheong and Kwon, 

1993) investigated the cracks around areas of  

stress concentrations in laminated composites by 

using a modified mapping-col locat ion method. 

The geometric shapes of cracks in these papers are 

assumed to be symmetric. It is difficult to solve a 

problem of a single crack emanating from a 

circular hole in laminates because of geometric 

asymmetry. 

In this study, the correction factors for a radial 

crack in cross-ply laminates under uniaxial ten- 

sion is calculated by the modified mapping collo- 

cation method which is based on analytic com- 

plex function theory of complex variables. The 

present results for the case of is otropic infinite 

plate under uniaxial tension are compared with 

those of references (Bowie, 1956; Tweed and 

Rooke, 1973). Then, numerical calculations are 

performed for a single crack emanating from a 

circular hole in various types of cross-ply lami- 

nates under uniaxial tension. 



Analysis o f  a Radial Crack in Cross-Ply Laminates Under Uniaxial Tension 651 

2. Basic Equation of Two-Dimensional 
Anisotropic Elasticity 

When body forces are absent or are constant, 

the differential equations of  equilibrium are 

3~Xox + - ~ = 0  

_~rxy + 3ay = 0  (1) 
Ox 3y 

The equation of compatibil i ty is 

O~2eX • 02•Y 02~XY~:0, (2) 
Ox ~ Oxay 

The stress-strain relations for an anisotropic 

material in plane stress can be expressed as fol- 

lows: 

7 x y  LOll6 (226 a66 ~xy a 

where aus are compliance components. 

The differential equations of equilibrium are 

satisfied by the introduction of  a stress function F 

(x, y) and by assuming that 

32F 3ZF OZF (4) 
r = ~ ,  (~Y= ~ '  rXy= axay 

From Eqs (2), (3), and (4), the general form 

of the stress function can be obtained as (Lekhnit- 

skii, 1968) 

F ( x ,  y) =2Re[Fl(Z~)  + Fz(z2) ] (5) 

where 

Zk=X+Sky  ( k = l ,  2) (6) 

and F~ and F2 are analytic functions of the com- 

plex variables z~ and z2, respectively. The com- 

plex parameters s~ and s2 are roots of characteris- 

tic equation given as (Lekhnitskii,  1968) 

aus4-2a16s3+ (2a~2+a~6)s2-2a26s+a22=O (7) 

Substituting Eq. (5) into Eq. (4), the stress 

components are 

ax= 2Re I s'~ r (zD + s~r (zz) ] 
ay=2Re[r + r (z2) ] 
"r =- - 2 R e [ s , r  + s2r (z2) ] (8) 

where 

From Eq. (3) and the strain-displacement 

relations, a simple integration gives the displace- 

ment components u and v : 

u = 2 R e  [PIr (z~) + Pz(z (z2) ] 
v = 2Re [q, r (zl) + q2 r (z2) ] (10) 

where p~, qk ( k :  1, 2) are defined by 

p~ : ans~ + a~z-  al6Sk 
qk = (a~zs~ + a22- a26sk) /s~ ( k =  1, 2) 

(11) 

The boundary conditions of the traction type 

may also be expressed as 

/~ (s) + U~(s) = i f ( X , +  iY. )  ds 

= (1 + is1) r (z~) + (1 + is2) r 
+ ( l + i s ~ ) r 1 6 2  (12) 

where Xn and yn are the x and y components of  

forces exerted upon the edge per unit area. The 

bar notation is a conjugate symbol. 

3. Theoretical Developments 

We consider a radial crack in cross-ply lami- 

nates as shown in Fig. 1. Because of  the complex 

crack geometry and strong material orthotropy, it 

is not so easy to solve this problem. The modified 

mapping-col locat ion method will be used, which 

was introduced in Bowie and Neal(1970),  and 

Bowie and Freese (1972). 

Y 
T 

Fig. Radial crack in cross-ply laminates under 
q3k(Zk) =Fk ' (Zk)  ( k =  1, 2) (9) uniaxial tension 
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We introduce the transformation 

z :  w(~-)= 4s ( ~ - + + ) 4  L 2 (13) 

The above mapping function carries the unit 
circle and its exterior in the ~" plane into the 

crack and its exterior. The other boundaries cor- 

respond to a closed contour in the ~" plane exte- 
rior to the unit circle with co-ordinate points 

2 L ~ 

We consider now the complex variables z~, & 

and the additional relations: 

z~=o)(g~) 
L 1 L =~-(~'~ + ~. ) + ~ - ( k = l ,  2) (15) 

Since z = & = z ~  on the crack, the parameter 

planes ~', ~'~, and ~'2 coincide on the unit circle. 

Otherwise, ~'1 and ~'~ are distinct and are found 
from 

2 

( k = l ,  2) (16) 

For convenience, we now define the following 
useful notation : 

95~ (z~) = 95[oJ(~0 ] = 95~ (~'~), 
95~(Zk)=95~(~'k)/CO'(~'~) ( k = l ,  2) 

where 

F r o m  

From 

terms 

From 

terms 

~7) 

w(~'h)= 1 - - ~  ( k = l ,  2) (18) 

Eqs. (8) and (17), the stresses in terms of  

and 952 (~'2) are 

~ - ~ e L s ' ~ + ' 2  co'(r ] 

a =gp~,[ 95~(~i) ~_~(z2) 1 
. . . .  L co'(~,) - ~o'(~'2) J 

2 n  F 95~(~h)_ .  951(~2)l r ~ - -  . e [ s i ~ q - ~ 7 . ~ 2 ~ j  (19) 

Eqs. (10) and (17), the displacements in 
of 95t(~'0 and 952(~'z) are 

u 2Re[p~95,(&) +P2952(~2)] 
v - -2Re  [q~ 95~ (~1) -~ q2952 (~'2) ] (20) 

Eqs. (12) and (17), the resultant-forces in 

of 951 (~'1) and q52 (~'2) are 

Im  

~ c l e  

= R e  

Fig .  2 ~-transformed plane 

/ l (s)  -- if2(s) = (I-~- is[) ~1(~1) 4_ (1 ~- is2) �9 

95~( ~) + ( l + i s~ ) ~, (~) 
+(1+is2)952(~2)+c  (21) 

Let S~ + and S{~ denote the two parameter 

regions corresponding to ~'1 and ~'2, respectively. 

Their union, S{, and S~ +, will be denoted by S{. 

Figure 2 shows the transformed parameter region 

S{. 
We introduce the following relation : 

where 

B = ($2 - -  $1) / ($2- -  $2) ,  

C = (s2 --s,)/(s,~-- s2) (24) 
Traction-free boundary condition on the crack 
can be ensured if 951(~') is analytic in the region 
S'~ and its inversion with respect to the unit circle 

(Bowie and Freese, 1972). If we assume that the 
total resultant forces per unit thickness exerted 

on the hole boundary are zero, we can express 951 
as follows " 

95, (~-) = ~ A,~n + ~] B~ (~.+ 1) n (25) 
- ~  n=l 

where An and Bn are complex constants. Finite 
dimensional problem can be solved by using the 
stress function defined in Eq. (25). 

The problem can be simplified to selecting the 

unknowns An and Bn in Eq. (25) so that the 
external boundary conditions may be satisfied. 

Arts are directly obtained by applying the bound- 
ary conditions at infinity given as 
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~ = 0 ,  ay=  T,  rxy=0 (26) 

Biaxial problem can be solved by giving ~ non 

zero value. Introducing the condition that stress 

components O'x, ~Ty, and rxy remain bounded at 

infinity and considering that the total resultant- 

forces per unit thickness exerted on the hole 

boundary are zero, the structures of the stress 

functions for large z can be expressed as (Sih, 

1973) 

r ~ DZl., (~2(~'2)~ (E+iF)z2  (27) 

Substituting Eqs. (26) and (27) into Eq. (8), we 

obtain 

(s 2 -F Sl 2) D JF (s ff -I- 822) E + i ( s ~ -  g22) F = 0 

2 D + 2 E =  T 
($1 Jr- ,~1) D + (s2 + g2) E + i ( s2 -  g2) F = 0  (28) 

Solving the above equation, we obtain 

D= (a.# + /~) T/A 
E= ( d -  ~ - 2 a ,  a~) T/,J 
F = {  a z (~ -~ 'O-aa (~ - f l ' ~ )  }T/~2zJ (29) 

where 

Z/=2{ (a2-al)2+ ( ~  r } (30) 

Considering Eqs (15) and (27), the stress 

functions ~bl (~'0 and ~b2 (~'~) for large ~'l and ~'2 

can be expressed as 

c~1(~1) - ~  (LD/4) ~, 02(~2) -~ { L(E + iF)~4 }~2 
(31) 

Taking into account of Eq. (22) and compar- 

ing Eq. (25) with Eq. (31), we obtain 

A _ ~ = L ( E -  i F -  Dff) / 4 B  
/ t l  = LD/4  
_An=0 for n ~ 2  or n - < - 2  (32) 

Because A0 is related to translational motion and 

does not affect the stress field, Ao can be set to 

zero. 

Thus, the stress function q~t(~') in Eq. (25) may 

be expressed as 

(~) = (LD/4) ~ + (L/4/~) (E - i F -  DC) 1 

+ ~ , ( a , §  " (33) 

where an and bn are real numbers to be deter- 

mined. The problem can be simplified to selecting 

the unknowns a, and b+ so that the boundary 

conditions on the circular hole may be satisfied. 

However, the complex parameters of cross-ply 

laminates are pure imaginary and loading is sym- 

metric. Thus, we can set b , = 0  for all n in Eq. 

(33). To accomplish numerical analysis, we have 

to truncate the terms of Eq. (33) over n = N .  
Substituting Eq. (33) into Eq. (19), the stress 

are 

where 

~2 $2 
" ( - n )  (~',+1)- '-~4 o/(~:~) S,,= o/(~',) 

/ 1 \-n-1 1 ) (35) 

Substituting Eq. (33) into (20), the displace- 

ments are 

+A-~B~2+ + ~ D n a . ,  etc (36) 

where 

D,=pl(~I+I)-'+p2{ B( ~.2+I)-~+C(~2+I) -n } (37) 

Substituting Eq. (33) into Eq. (21), the resul- 

tant-forces are 

where 

1 n 

Truncating the unknown terms a ,  in Eq. (33) 

so that the boundary conditions on the circular 

hole are satisfied with a sufficient accuracy, the 

stress function may be determined. The stress 

intensity factors may be evaluated directly from 

the stress functions ~bl(z~) or ~b2(z2). In the limit 

as zj approaches the crack tip, say z o ( = L ) ,  we 

can express the relation between the stress inten- 

sity factors and the stress functions as follows( 
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Sih and Liebowitz, 1968) : 

KI-~ Kll 
82 

: 2 f ' 2 ~ - [ ~ ]  lira0 ~ r (z,) (40) 

Considering mapping function z :  co (~') and em- 

ploying Eqs. ( 1 5 ) -  (18), we obtain 

K~ + Kn  = 2 ~ / ~ [  Sz -- Sl ] qs"l ( l ) (41) 
Sz k $2 J 

Substituting Eq. (33) into eq. (41), the stress 

intensity factors can be expressed in terms of 

coefficients stress function. 

s n 

Thus, we can evaluate the stress intensity factors 

if the coefficients of the stress functions are deter- 

mined. 

4. Numerical  Results  

The correction factors for a radial crack in 

cross-ply laminates were calculated by Fortran 

program based on the foregoing analysis. The 

stress intensity factors are presented as functions 

of the normalized crack length ( L - R ) / L  for 

various types of cross-ply laminates. It is suffi- 

cient to apply the collocation argument over a 

half of the circular hole boundary in this study. 

Figure 3 shows the convergence curve for a 

radial crack in [0/903s laminate under uniaxial 

tension. It was found truncation over n : 4 0  is 

sufficient. In this study, stress intensity factors 

were normalized with those for the case of a 

central crack of length 2L in infinite plate. 

Material properties of E-glass/epoxy used in the 

current analysis are as follows : 

E1 :53 .74  GPa(7.80•  106 psi), 

E2:17.91 GPa(2.60•  106 psi), 

G~2:8.96 GPa(1.30•  106 psi), uaz=0.25 

Figure 4 compares the present results for the 

case of isotropic infinite plate under uniaxial 

tension with those of references (Bowie, 1956; 

Tweed and Rooke, 1976). The isotropic solution 

was obtained by setting the complex parameters s~ 

= 1.0 i and sz=0.995i. Bowie(1956) obtained the 

solution by the boundary collocation method. 

Tweed and Rooke(1976) obtained the solution 

by Mellin transform technique. The present 

results almost coincide with those of references 

Figure 5 shows the correction factors for a 

radial crack in cross-ply laminates under uniaxial 

tension. The stress intensity factors increase as the 

ratio ( L - R ) / L  increases up to about 0.2 or 0.3, 

and then decrease as the ratio increases further. It 

seems that the stress concentration is greatly 

dependent on the percentage of 0 ~ plies in cross- 

ply laminats with a circular hole until the ratio is 

about 0.2 to 0.3. In the range of small crack 

length, the stress intensity factor for a radial crack 

in cross-ply laminates under uniaxial tension 

becomes larger as the percentage of 0 ~ plies 

increases. When the crack is short, the stress 
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0 .0  

Fig. 3 
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Convergence curve for a radial crack in [0/ 
90Is laminate under uniaxial tension 
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2 4 6 .8 1.0 
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Correction factors for a radial crack in an 
isotropic infinite plate under uniaxial tension 
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1 0  

Correction factors for a radial crack in cross- 
ply laminates under uniaxial tension 

intensity factor for [0] laminate is about fifty 

percent higher than that for I90] laminate. In the 

range of large crack length, the stress intensity 

factors have almost same values regardless of  the 

percentage of 0 ~ plies. 

5. Conclusions 

Analyzing the problem of a radial crack in 

cross-ply laminates under uniaxial tension, con- 

clusive remarks can be summarized as follows: 

(1) The present results for the case of isot ropic  

infinite plate under uniaxial tension coincide with 

those of references. 

(2) The stress intensity factors for a radial 

crack in cross-ply laminates under uniaxial ten- 

sion increase as the ratio ( L - t ? ) / L  increases up 

to about 0.2 or 0.3, and then decrease as the ratio 

increases further. 

(3) In the range of small crack length, the 

stress intensity factor for a radial crack in cross 

-ply  laminates under uniaxial tension becomes 

larger as the percentage of 0 ~ plies increases. 

(4) In the range of  large crack length the stress 

intensity factors for a radial crack in cross-ply 

laminates under uniaxial tension are insensitive to 

the percentage of 0 ~ plies. 

(5) The formulation developed in this paper 

can be extended to biaxial problem and finite 

dimensional problem. 
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